pUNO1-hSTING-M155
 Expression vector containing M155 isoform human STING (V155M) open reading frame
 Catalog code: puno1-hsting-m155
 https://www.invivogen.com/hsting-m155

For research use only
Version 19K10-MM

PRODUCT INFORMATION

Contents

- $20 \mu \mathrm{~g}$ of lyophilized plasmid DNA
- $2 \times 1 \mathrm{ml}$ blasticidin at $10 \mathrm{mg} / \mathrm{ml}$

Storage and Stability

- Product is shipped at room temperature.
- Lyophilized DNA should be stored at $-20^{\circ} \mathrm{C}$.
- Resuspended DNA should be stored at $-20^{\circ} \mathrm{C}$ and is stable at least for 1 year.
- Store blasticidin at $4^{\circ} \mathrm{C}$ or $-20^{\circ} \mathrm{C}$. ${ }^{*}$
*The expiry date is specified on the product label.
Quality control
- Plasmid construct has been confirmed by restriction analysis and full-length open reading frame (ORF) sequencing.
- Plasmid DNA was purified by ion exchange chromatography.

GENERAL PRODUCT USE

- Subclone gene into another vector. Two unique restriction sites flank the gene, allowing convenient excision. The 5' site is BspEl which is compatible with Agel, Xmal, NgoMIV and SgrAl. The 3' site is Nhel which is compatible with Xbal, Spel, and AvrII.
- Stable gene expression in mammalian cells. pUNO1 plasmids can be used directly in transfection experiments both in vitro and in vivo. pUNO1 plasmids contain the blasticidin-resistance gene (bsr) driven by the CMV promoter/enhancer in tandem with the bacterial EM7 promoter. This allows the amplification of the plasmid in E. coli, as well as the selection of stable clones in mammalian cells using the same selective antibiotic. pUNO1 allows high levels of expression and secretion of the gene product.

METHODS

Plasmid resuspension

Quickly spin the tube containing the lyophilized plasmid to pellet the DNA. To obtain a plasmid solution at $1 \mu \mathrm{~g} / \mu \mathrm{l}$, resuspend the DNA in $20 \mu \mathrm{l}$ of sterile water. Store resuspended plasmid at $-20^{\circ} \mathrm{C}$.

Plasmid amplification and cloning

Plasmid amplification and cloning can be performed in E. coli GT116 or other commonly used laboratory E. coli strains, such as DH5a.

Blasticidin usage

Blasticidin should be used at $25-100 \mu \mathrm{~g} / \mathrm{ml}$ in bacteria and $1-30 \mu \mathrm{~g} / \mathrm{ml}$ in mammalian cells. Blasticidin is supplied at $10 \mathrm{mg} / \mathrm{ml}$ in HEPES buffer.

PLASMID FEATURES

- Bsr (blasticidin resistance gene): The bsr gene from Bacillus cereus encodes a deaminase that confers resistance to the antibiotic blasticidin. The bsr gene is driven by the CMV promoter/enhancer in tandem with the bacterial EM7 promoter. Therefore, blasticidin can be used to select stable mammalian cells transfectants and E. coli transformants.
- CMV promoter \& enhancer drives the expression of the blasticidin resistance in mammalian cells.
- Human STING-M155

ORF size: 1140 bp Cloning fragment size: 1181 bp
STING (stimulator of interferon genes; also known as TMEM173, MITA, MPYS, and ERIS) is essential for the interferon (IFN) response to microbial or self-DNA, and acts as a direct sensor of cyclic dinucleotides (CDNs). Several variants of STING have been described in the human population. The M155 (V155M) variant results in a gain-of-function mutation with the constitutive activation of STING and an upregulation of IFN production ${ }^{1}$. This mutation is associated with a chronic autoinflammatory disease, known as STING-associated vasculopathy with onset in infancy (SAVI) ${ }^{2}$.

- EF-1a/HTLV hybrid promoter is a composite promoter comprised of the Elongation Factor-1a (EF-1a) core promoter ${ }^{3}$ and the 5' untranslated region of the Human T-Cell Leukemia Virus (HTLV). EF-1a utilizes a type 2 promoter that encodes for a «house keeping» gene. It is expressed at high levels in all cell cycles and lower levels during GO phase. The promoter is also non-tissue specific; it is highly expressed in all cell types. The R segment and part of the U 5 sequence (R-U5') of the HTLV Type 1 Long Terminal Repeat ${ }^{4}$ has been coupled to the EF-1a promoter to enhance stability of DNA and RNA. This modification not only increases steady state transcription, but also significantly increases translation efficiency possibly through mRNA stabilization.
- SV40 pAn: The Simian Virus 40 late polyadenylation signal enables efficient cleavage and polyadenylation reactions, resulting in high levels of steady-state mRNA5.
- pMB1 ori is a minimal E. coli origin of replication to limit vector size, but with the same activity as the longer Ori.
- Human beta-Globin polyA is a strong polyadenylation (pAn) signal placed downstream of bsr. The use of beta-globin pAn minimizes interference ${ }^{6}$ and possible recombination events with the SV40 polyadenylation signal.

1. Jeremiah N. et al., 2013. Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. J Clin Invest. 124(12):5516-20. 2. Liu Y. et al., 2014. Activated STING in a vascular and pulmonary syndrome. N Engl J Med. 371(6):507-18. 3. Kim D. et al., 1990. Use of the human elongation factor $1 a$ promoter as a versatile and efficient expression system. Gene 91(2):217-23. 4. Takebe Y.et al., 1988. SR alpha promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol Cell Biol. 8(1):466-72. 5. Carswell S. \& Alwine J., 1989. Efficiency of utilization of the simian virus 40 late polyadenylation site: effects of upstream sequences. Mol Cell Biol. 9(10):4248-58. 6. Yu J. \& Russell J., 2001. Structural and functional analysis of an mRNP complex that mediates the high stability of human β-globin mRNA. Mol Cell Biol. 21(17):5879-88.

RELATED PRODUCTS

ChemiComp GT116

InvivoGen Hong Kong : +852 3622-3480
E-mail: info@invivogen.com

PvuI (7)
Sgfi (6)
1 GGATCTGCGATCGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCCGAGAAGTTGGGGGGA

MfeI (82)
75 GGGGTCGGCAATTGAACGGGTGCCTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGTACTGGCT

Psp1406I (203)
149 CCGCCTTTTTCCCGAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACG

HindIII (245)
Bsu36I
(291)

223 GGTTTGCCGCCAGAACACAGCTGAAGCTTCGAGGGGCTCGCATCTCTCCTTCACGCGCCCGCCGCCCTACCTGA
297 GGCCGCCATCCACGCCGGTTGAGTCGCGTTCTGCCGCCTCCCGCCTGTGGTGCCTCCTGAACTGCGTCCGCCGT

NgoMIV (441)
NgoMI (441)
NaeI (441)
371 CTAGGTAAGTTTAAAGCTCAGGTCGAGACCGGGCCTTTGTCCGGCGCTCCCTTGGAGCCTACCTAGACTCAGCC

445 GGCTCTCCACGCTTTGCCTGACCCTGCTTGCTCAACTCTACGTCTTTGTTTCGTTTTCTGTTCTGCGCCGTTAC

SphI (566)
BspEI (558)
519 AGATCCAAGCTGTGACCGGCGCCTACCTGAGATCACCGGCTCCGGACAGCATGCCCCACTCCAGCCTGCATCCA 1* M P H S S L H P Bsp120I (617)
593 TCCATCCCGTGTCCCAGGGGTCACGGGGCCCAGAAGGCAGCCTTGGTTCTGCTGAGTGCCTGCCTGGTGACCCT
 Asp718I (701)
667 TTGGGGGCTAGGAGAGCCACCAGAGCACACTCTCCGGTACCTGGTCCTCCACCTAGCCTCCCTGCAGCTGGGAC 33* W G L G E P P E H T L R Y L V L H L A Asp718I (794)
741 TGCTGTTAAACGGGGTCTGCAGCCTGGCTGAGGAGCTGCGCCACATCCACTCCAGGTACCGGGGCAGCTACTGG 58 L L L N G V C S L A E E L R H I Bsp120I (854)
815 AGGACTGTGCGGGCCTGCCTGGGCTGCCCCCTCCGCCGTGGGGCCCTGTTGCTGCTGTCCATCTATTTCTACTA
 889 CTCCCTCCCAAATGCGGTCGGCCCGCCCTTCACTTGGATGCTTGCCCTCCTGGGCCTCTCGCAGGCACTGAACA
 SfiI (970) BglII (995)

NcoI (1035)
963 TCCTCCTGGGCCTCAAGGGCCTGGCCCCAGCTGAGATCTCTGCAGTGTGTGAAAAAGGGAATTTCAACATGGCC

EcoRV (1064)

BstBI (1103)
AsuII (1103)
1037 CATGGGCTGGCATGGTCATATTACATCGGATATCTGCGGCTGATCCTGCCAGAGCTCCAGGCCCGGATTCGAAC
 1111 TTACAATCAGCATTACAACAACCTGCTACGGGGTGCAGTGAGCCAGCGGCTGTATATTCTCCTCCCATTGGACT

AgeI (1252)
1185 GTGGGGTGCCTGATAACCTGAGTATGGCTGACCCCAACATTCGCTTCCTGGATAAACTGCCCCAGCAGACCGGT
 1259 GACCGTGCTGGCATCAAGGATCGGGTTTACAGCAACAGCATCTATGAGCTTCTGGAGAACGGGCAGCGGGCGGG
 1333 CACCTGTGTCCTGGAGTACGCCACCCCCTTGCAGACTTTGTTTGCCATGTCACAATACAGTCAAGCTGGCTTTA 255 T C V L E Y A T P L 1407 GCCGGGAGGATAGGCTTGAGCAGGCCAAACTCTTCTGCCGGACACTTGAGGACATCCTGGCAGATGCCCCTGAG
 1481 TCTCAGAACAACTGCCGCCTCATTGCCTACCAGGAACCTGCAGATGACAGCAGCTTCTCGCTGTCCCAGGAGGT
 1555 TCTCCGGCACCTGCGGCAGGAGGAAAAGGAAGAGGTTACTGTGGGCAGCTTGAAGACCTCAGCGGTGCCCAGTA 329* L R H L R Q E E K E E V T V G S L K T S A V P 1629 CCTCCACGATGTCCCAAGAGCCTGAGCTCCTCATCAGTGGAATGGAAAAGCCCCTCCCTCTCCGCACGGATTTC


```
                                    MscI (1745)
NheI (1739)
1 7 0 3 ~ T C T T G A G A C C C A G G G T C A C C A G G C C A G A G C C T C C A G T G C T A G C T G G C C A G A C A T G A T A A G A T A C A T T G A T G A G T \
    379* S •
1777 TTGGACAAACCACAACTAGAATGCAGTGAAAAAAATGCTTTATTTGTGAAATTTGTGATGCTATTGCTTTATTT
```

HpaI (1877) MfeI (1888)
1851 GTAACCATTATAAGCTGCAATAAACAAGTTAACAACAACAATTGCATTCATTTTATGTTTCAGGTTCAGGGGGA

1925	GGTGTGGGAGGTTTTTTAAAGCAAGTAAAACCTCTACAAATGTGGTATGGAATTCTAAAATACAGCATAGCAAA
1999	ACTTTAACCTCCAAATCAAGCCTCTACTTGAATCCTTTTCTGAGGGATGAATAAGGCATAGGCATCAGGGGCTG

SspI (2212)
2147 TTTGAACTAGCTCTTCATTTCTTTATGTTTTAAATGCACTGACCTCCCACATTCCCTTTTTAGTAAAATATTCA

SwaI (2226)
2221 GAAATAATTTAAATACATCATTGCAATGAAAATAAATGTTTTTTATTAGGCAGAATCCAGATGCTCAAGGCCCT

2295 TCATAATATCCCCCAGTTTAGTAGTTGGACTTAGGGAACAAAGGAACCTTTAATAGAAATTGGACAGCAAGAAA

2369 GCGAGCTTCTAGCTTTAGTTCCTGGTGTACTTGAGGGGGATGAGTTCCTCAATGGTGGTTTTGACCAGCTTGCC 1411 • N R T Y K L P I L E E I T
2443 ATTCATCTCAATGAGCACAAAGCAGTCAGGAGCATAGTCAGAGATGAGCTCTCTGCACATGCCACAGGGGCTGA
 BstXI (2516)
2517 CCACCCTGATGGATCTGTCCACCTCATCAGAGTAGGGGTGCCTGACAGCCACAATGGTGTCAAAGTCCTTCTGC 964 V R I S R D V StuI (2651) Eco147I (2651)
2591 CCGTTGCTCACAGCAGACCCAATGGCAATGGCTTCAGCACAGACAGTGACCCTGCCAATGTAGGCCTCAATGTG $71 \mathrm{G} N \mathrm{~S} V \mathrm{~A} \mathrm{~S} G \mathrm{I}$ A I A E A C V T V R G I Y A E I H
2665 GACAGCAGAGATGATCTCCCCAGTCTTGGTCCTGATGGCCGCCCCGACATGGTGCTTGTTGTCCTCATAGAGCA
 BspHI (2801)
XmnI (2793)
2739 TGGTGATCTTCTCAGTGGCGACCTCCACCAGCTCCAGATCCTGCTGAGAGATGTTGAAGGTCTTCATGATGGCC 22.1. $\mathrm{T} \quad \mathrm{I}$ VspI (2859) AseI (2859)
2813 CTCCTATAGTGAGTCGTATTATACTATGCCGATATACTATGCCGATGATTAATTGTCAAAACAGCGTGGATGGC
2887 GTCTCCAGC T TATCTGACGGTTCACTAAACGAGCTCTGCTTATATAGACCTCCCACCGTACACGCCTACCGCCC

SpeI (3014)

2961 ATTTGCGTCAATGGGGCGGAGTTGTTACGACATTTTGGAAAGTCCCGTTGATTTACTAGTCAAAACAAACTCC
3034 CATTGACGTCAATGGGGTGGAGACTTGGAAATCCCCGTGAGTCAAACCGCTATCCACGCCCATTGATGTACTGC
SnaBI (3142)
Eco105I (3142)
3108 CAAAACCGCATCATCATGGTAATAGCGATGACTAATACGTAGATGTACTGCCAAGTAGGAAAGTCCCATAAGGT

3182	CATGTACTGGGCATAATGCCAGGCGGGCCATTTACCGTCATTGACGTCAATAGGGGGCGTACTTGGCATATGAT

SdaI (3425)PacI (3433) BspLU11I (3443)
3404 ATTTACCGTAAGTTATGTAACGCCTGCAG G TT AA TTAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGG

3476 AACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACG
3550 CTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGC
3624 GCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCT
ApaLI (3757)
3698 CATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCC
3772 CGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGC

3846 CACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGG
3920 TGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAA
3994 AAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGA

4068 TTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAA
EagI (4193)
PacI (4173) SwaI (4182) NotI (4192)
4142 AACTCACGTTAAGGGATTTTGGTCATGGCTAGTTAATTAACATTTAAATC AGCGGCCGCAATAAAATATCTTTA
4216 TTTTCATTACATCTGTGTGTTGGTTTTTTGTGTGAATCGTAACTAACATACGCTCTCCATCAAAACAAAACGAA
4290 ACAAAACAAACTAGCAAAATAGGCTGTCCCCAGTGCAAGTGCAGGTGCCAGAACATTTCTCTATCGAA

